7,395 research outputs found

    Quantum dynamics of a hydrogen-like atom in a time-dependent box: non-adiabatic regime

    Full text link
    We consider a hydrogen atom confined in time-dependent trap created by a spherical impenetrable box with time-dependent radius. For such model we study the behavior of atomic electron under the (non-adiabatic) dynamical confinement caused by the rapidly moving wall of the box. The expectation values of the total and kinetic energy, average force, pressure and coordinate are analyzed as a function of time for linearly expanding, contracting and harmonically breathing boxes. It is shown that linearly extending box leads to de-excitation of the atom, while the rapidly contracting box causes the creation of very high pressure on the atom and transition of the atomic electron into the unbound state. In harmonically breathing box diffusive excitation of atomic electron may occur in analogy with that for atom in a microwave field

    Local normal forms for c-projectively equivalent metrics and proof of the Yano-Obata conjecture in arbitrary signature. Proof of the projective Lichnerowicz conjecture for Lorentzian metrics

    Get PDF
    Two K\"ahler metrics on a complex manifold are called c-projectively equivalent if their JJ-planar curves coincide. These curves are defined by the property that the acceleration is complex proportional to the velocity. We give an explicit local description of all pairs of c-projectively equivalent K\"ahler metrics of arbitrary signature and use this description to prove the classical Yano-Obata conjecture: we show that on a closed connected K\"ahler manifold of arbitrary signature, any c-projective vector field is an affine vector field unless the manifold is CPnCP^n with (a multiple of) the Fubini-Study metric. As a by-product, we prove the projective Lichnerowicz conjecture for metrics of Lorentzian signature: we show that on a closed connected Lorentzian manifold, any projective vector field is an affine vector field.Comment: comments are welcom
    • …
    corecore